If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+10x-1584=0
a = 1; b = 10; c = -1584;
Δ = b2-4ac
Δ = 102-4·1·(-1584)
Δ = 6436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6436}=\sqrt{4*1609}=\sqrt{4}*\sqrt{1609}=2\sqrt{1609}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-2\sqrt{1609}}{2*1}=\frac{-10-2\sqrt{1609}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+2\sqrt{1609}}{2*1}=\frac{-10+2\sqrt{1609}}{2} $
| 6x2+x-5=0 | | (24*2*3)/(6*12)=x | | 10x^2+60x=72 | | 2n+3=4n | | -5(x-4)=-35 | | (x−8)^2=16 | | 12x=-12x-8 | | 3x-1=8x-20 | | -72=-5(5-5n)-6(8n+4) | | 6/5+5m/6=71/30 | | 4(x-3)^(.5)-(7x-24)^(.5)=3 | | .0169=c2 | | 9x^2-101+232=0 | | 3x-4+1=-2x-5=5x | | 24(x/6-1/3)-x=-24 | | (12*5)/15=x | | ((x+7)/14)=(5/7)+((x-6)/4) | | -17+3k=7(5k+6) | | x^2+6x-15=1 | | 5=6g-5-g | | 9x+22=4x+7 | | 1+2b−13=12−4b−2b | | 2(w+5)+2w=98 | | -88=8(5-3k) | | 7/5+2/5x=79/30+7/6x+1/6 | | 10y-6y=36 | | 3(3k-10)+1=8(3/2k+2) | | -5+v=-3 | | 3/4x+4=13 | | 7/20=1/6+1/2x | | 8(6p+1)=8(10p+8)-4p | | 6x-15+2x=8x-17 |